Quantum Dots Microstructural Metrology: From Time‐Resolved Spectroscopy to Spatially Resolved Electron Microscopy
Abstract
Colloidal quantum dots (QDs) have unique optical and electrical properties with promising applications in next‐generation semiconductor technologies, including displays, lighting, solar cells, photodetectors, and image sensors. Advanced analytical tools to probe the optical, morphological, structural, compositional, and electrical properties of QDs and their ensemble solid films are of paramount importance for the understanding of their device performance. In this review, comprehensive studies on the state‐of‐the‐art metrology approaches used in QD research are introduced, with particular focus on time‐resolved (TR) and spatially resolved (SR) spectroscopy and microscopy. Through discussing these analysis techniques in different QD system, such as various compositions, sizes, and shell structures, the critical roles of these TR‐spectroscopic and SR‐microscopic techniques are highlighted, which provide the structural, morphological, compositional, optical, and electrical information to precisely design QDs and QD solid films. The employment of TR and SR analysis in integrated QD device systems is also discussed, which can offer detailed microstructural information for achieving high performance in specific applications. In the end, the current limitations of these analytical tools are discussed, and the future development of the possibility of interdisciplinary research in both QD fundamental and applied fields is prospected.
Full Open Access review article:
Source: Preview Image: whiteMocca/Shutterstock