22.02.2022 •

High-Density Microfluidic Particle-Cluster-Array Device for Parallel and Dynamic Study of Interaction between Engineered Particles

Abstract

A high-density and high-performance microfluidic particle-cluster-array device utilizing a novel hydrodynamically tunable pneumatic valve (HTPV) is reported for parallel and dynamic monitoring of the interactions taking place in particle clusters. The key concept involves passive operation of the HTPV through elastic deformation of a thin membrane using only the hydrodynamic force inherent in microchannel flows. This unique feature allows the discrete and high-density (≈30 HTPVs mm−2) arrangement of numerous HTPVs in a microfluidic channel without any pneumatic connection. In addition, the HTPV achieves high-performance clustering (≈92%) of three different particles in an array format through the optimization of key design and operating parameters. Finally, a contamination-free, parallel, and dynamic biochemical analysis strategy is proposed, which employs a simple one-inlet–one-outlet device operated by the effective combination of several techniques, including particle clustering, the interactions between engineered particles, two-phase partitioning and dehydration control of aqueous plugs, and shape/color-based particle identification.

Full article:

Advanced Materials